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Fig. 2. Four-level  estimation  technique. 

Rat,her  than give all of t,he details for 44, +:, and 66, we shall first 
give the details for +< and  then indicate very briefly how 45 and +K 
are  obtained. 

$4 is  obtained by substituting ( E ) ,  (14), and (5) into  the  eqression 

where we have used the fact. that CzC4 = &. 
6: is computed  from the expression 

+5 = ki‘G(Q34) (41) 

where 034 is given by the second mat,rix in the second line on the 
right-hand side of (40). Observing that  the second raw of is 
9 4 ,  we begin the computat.ion of +: by expressing *34 as 

( ). 
PIT& + T+3 

a34 = 9 4  (42) 
P3T02 + c163 f cIc3b + Ca3C4 

The  computation of 46 is completed by carrying through  the opera- 
t.ions indicat,ed in (41). 6 6  is derived  in a similar manner. 

REFEREXES 
111 J. hI. Mendel.  “Gradient. error-correction  identification  aleorithms.” . .  

Injorm. Sei., vol: 1, no. 1, pp:23-42, 1968. 
121 --.“Gradient  identification for linear systems,” in Adaptive,  Learning, 

a n d  Pattern Recognition Systems. J. hl. Mendel  and K. S. Fu. Ed.  New 

131 -“Sequential  identification by means of gradientrlearning-algorithms,” 
m Pattern  Recognition  and Machine Learning, K. S. Fu, Ed. S e w  York: 
Plpnnm 1971. 

[4] - ,“A priori  and a  posteriori identificat.ion of time-varying  parameters,” 
yf;Fented at  the  2nd  Hawaii  Int.  Conf.  System Sciences.  Honolulu, Hawaii, 

- . __ - -, - - . -. 

1 afia 
151 -”Identification Ef decomposable  timevarying  parameters  by  means of 

161 9.  S. Meditch, S t o c h k e  Optimal Lhea;  E’stimation and Control. New  York: 

A“V“. 

radient  algorirhms Inform. Sei. vol 5 June  1972. 

MeGraa-Hill. lQ69 
171 J. M. Mendel. Discrete  Techniques of Parameter  Estimation: The Equation- 

[SI G. N. Saridls  and G. Stein A new algorithm for linear  syst.em  ident.ifica- 
Error  Formulation. New Y y k :  Marcel  Dekker.  1973. 

tjon,’.JA&?3E Trans. Auto&. Contr. (Corresp.), vol. AC-13, pp. 592-594, 

._.~.. ^I__. 

191 G. N. Saridis  and R. h’. Lobbia  “Parameter  identification  and  control 
U C t .  1 Y 6 8 .  

of linear  discrete-time  systems,” I E E E  Trans. Automat .  Contr., vol.  AC-li, 
pp. 52-60, Feb.  1972. 

On the Structure of Optimal Area Controls in 
Electkic Power Networks 

HARRY G. KWATNY AND THOhIAS E. BECHERT 

Abstract-Static optimization techniques  have  been  used by the 
electric power industry  for  several  years to solve the problem of 
economic load allocation. Experience has shown that  daculties 
frequently arise when these solutions are incorporated in the feed- 
back control of dynamic electric power networks. In a recent paper, 
economic load allocation was  formulated  as a  dynamic  optimal 
control problem in an effort to overcome the  disadvantages of con- 
trollers  currently  used. At the  heart of that problem is  the  area con- 
trol problem that  is  treated in  detail  in this paper. An unusual  fea- 
ture of the  area control problem is  that  it contains kinks.  The maxi- 
mal principle is modified for  this situation.  Necessary  conditions for 
an optimal controller are obtained for  the  general case of n gener- 
ators. The optimal feedback controller is synthesized for  the  case 
of two-generator load  sharing. 

I. INTRODUCTION 
A primary objective in the control of electric power networks is to  

match generation to  load and to  dist.ribute the required  generation 
among the available  generators in the most economicpl manner. To 
accomplish this object.ive, most modern dispat.ch controllers  deter- 
mine t,he steady-state minimum operating cost distribution of load 
and incorporate the solution to  this problem  as  a trim on the load- 
frequency controller. Such a procedure  often  results  in  unsat.isfact,ory 
performance,  as  might be anticipat,ed when the solution to  a static 
problem is imbedded  in the feedback  control of a dynamic system. 
Two current  trends  tend to  increase the likelihood of such an occur- 
rence. One is the decrease in system response rate capabilities as a 
percent.age of system capacit,y. The second is the t.endency to  include 
in the  dispatch controllers  more accurate representation of thermal 
plant economic characteristics,  in particular, recognition of the dis- 
cont.inuous increment.al heat  rate characteristics of modern multiple 
valve turbines. 

In  [I], optimal load allocat.ion is formulated as  a dynamic  control 
problem, which t.akes into account. not only the st.eady-stat.e cost 
characteristics,  but. also the dynamic  costs  involved  in  changing the 
level of megawatt generation. The procedure used to  design the 
controller is to  part,ition t.he overall  problem into a single “network 
control  problem” and several  identical “area cont,rol problem.” 
The feedback  controller has been synthesized for the special case of 
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two-generator  load sharing in one area of a two-area interconnection. 
In  digital  simulations,  reported in [ l ] ,  the proposed controller 
proved far superior to conventional  controllers in steering the system 
rapidly to  the new economic operat.ing point following a  load change. 

In  this paper  the construction of the  optimal  area controller  is 
described in  detail. Necessary conditions are obtained  for the general 
case in which the  area is composed of an arbit.rary  number of thermal 
generating stations.  These condit.ions are used to  obtain a  feedback 
synthesis of the optimal controller for a two-generator control  area. 
The  area control  problem has a number of interesting charact.er- 
istics, and solution of the two-generator problem provides valuable 
insights int.0 the  structure of the general solution. 

11. THE AREA CONTROL PROBLEM 
System Xodel 

A  control area  may  be considered to  consist of a number of generat- 
ing stations, each of which is  limited t.o a maximum allowable rate 
of change of power output [ 11. Let 

2s Power delivered by  the  ith generating station. 
ui Rate of change of power output, of ith generating station. 
U i  3Iaximum allowable rate of change of power output of it.h 

n Sumber of generat.ing stat.ions in the cont.ro1 area. 
generating station. 

The dynamic  system may be represented by t.he following set of firs& 
order  linear differential equations: 

hi 
- = u.i, i = 1,21. . .,n. 
dt 

The control  vector u( t )  lies in the restraint.  set Q defined by t,he 
following: 

Q = {u: luil 2 ~ i ,  i = 1 ~ 2 , .  . (2 1 

Performance Evaluation 

The function of the area  control  system is t.o steer the  area gener- 
ator  outputs  from  an  arbitrary  initial stat.e to a desired target  state 
which will be specified below. Under  normal  conditions this can 
alaays  be accomplished in a finite-time interval which will be desig- 
nated [O,T]. Performance  evaluation of candidate controllers will 
be based on costs  incurred  within the control area during the transi- 
tion.  These costs include: 1)  t.he durat.ion of the control  interval 
[O,T]; 2) the area  megawatt error; 3)  costs based on the  rate of 
change of  porn-er output;  and 4) fuel costs. Costs associated with 3)  
reflect, among  other things, reduction of machinery life due  to in- 
creased mechanical and t,hermal s t r e s s  The cost, functional used in 
t.his study is 

C(u)  = { cy1 + (22j  - L)* + a3(2mjluj1g’) + c y I ( Z h b ( J j ) ) ]  dt (3) 
SOT 

where L is the  total  area power demand, h j ( z j )  is the  steady-state 
heat  rate characterist.ic of the  j th  generat.ing station,  and m j  and q1 
are constants associated m-ith the  j th  generating st.ation. 

Heat  Rate Characteristics 

The  steady-state fuel consumed per unit time, or heat rate (h ) ,  
increases with  output power generation (x). In moat applications, 
t.he heat. rate characteristics are approximated by  smooth convex 
functions [3], although some applications  have explicitly recognized 
the incremental heat  rate discontinuities due  to valve points [4],[5]. 
These  discontinuities are considered to be of central importance in 
the operation of electric power systenx  and will be included in the 
present analysis. In  this  study,  the heat. rate characteristics will be 
approximated by piecewise linear curves as shown in Fig. 1. 

Target State 
Let H denote  the overall area  heat rate, equal to  the sum of the 

individual station heat  rates. Let g denote the area power generation 
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Fig.  1.  Approximate heat rate and incremental heat  rate Characteristics  for 
multiple valve turbine. 

deficiency. The t.arget st.ate is defined as the v a l u s  of x , , ~ ~ , .  . .,x,, 
that minimize H ,  subject  to  the  constraint zl + zz + . . . + I,, = L. 

Statement of the Area Control Problm 

The set. of admissible controls is the  set of measurable  control 
vectors u(t) in R t.hat steer the system state (1) from some arbitrary 
initial state ~ ( 0 )  = 50 to  the fixed target  state x ( T )  = S T  correspond- 
ing to a fixed load L. The control problem is to find the  optimal 
control u * ( t ) ,  i.e., the vector .u(t) t.hat steers the system  from x0 to 
XT while minimizing the cost functional C l u ) .  

111. OPTINAL CONTROLLER NECESSARY COXDITIONS 

The Maximal Prineiple 

The problem at hand differs from the usual  optimal  control  prob- 
lem in that  the  integrand of C ( u )  contains  functions of the  stat.e 
variables, specifically, the  unit  heat r a t s  h, (r i ) ,  which have dis- 
continuous first derivat,ives. It k illuminating to  esamine  the  situ- 
ation in a  slightly more general context,. Letf(z)  be a convex function 
defined on some open interval D. Then f(z) is supported  from below 
at each point. p E D by a  linear support hyperplane 

S ( I , P )  = S(P) + . A P ) ( ~  - pj. (4 1 
fis said to be rough a t  p if it  has more than one support  hyperplane at  
p ;  otherwise, f is said to be smooth  at p .  

The essential characteristic of the  area control problem is that  the 
integrand of C(u)  is rough. Luenberger [2] has applied the  term 
“kinks” to  describe such  a situation.  In  the prezence of kinks the 
usual  theorems that. provide necessary conditions for optimal control 
fail t o  apply.  The  approach  taken here will be to  appropriately 
modify t,he maximal principle in order to  obtain a suitable  set of 
necessary conditions. As will be seen, the required modifications are 
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straightforward. Nevertheless, they have distinct.ive consequences 
on the final solut,ion. 

Consider t,he linear  time-invariant  control process in Rn 

j. = Az + Bu(t) 

with cost funct,ional 

wrhere .fO(x) and hO(u) are positive convex functions, and  with com- 
pact,, convex control  rest,raint u(t)  c 0 c Rm. The  st.ate  vector z ( t )  
is extended to  an (n + 1)-vector 

z ( t )  = ( ~ ~ ( t ) , z , ( t ) ,  ' .,zn(t))' 

by defining an  additional  stat.e  variable 

adjoint vector +j* is replaced by 7j*/q0. n'ithout loss of generality, it  
is henceforth assumed that 170 = - 1. 

Mazimiza.tion ofthe  Hamiltonian 

Denoting pi = aorni, maximizing t,he Hamilt,onian as given by 
(5)-(7) wit.h respect to  u is equivalent to  maximizing each of the 
funct,ions 

Gi(ui) = t]iui - pi1 uil Pi,  i = 1,. . . Jn 
with respect to  x;. If pi > 1, then it,  is not diflicult to show that 

[?i A > G i  

ui* = A ( A I  5 Ui 
- L i i  A <  - l i i  (9 1 

29 fO(z) + ho(u), ~ o ( 0 )  = 0. 

An (n + 1)-dimensional augmented adjoint  vector $( t )  is defined as a 
continuow solution of the  system of equat.ions 

where 

qo(t) = constant 

+ = -?A - q o u p ( ~ ) ,  q E Rn*. 

The  Hamiltonian function is defined as 

H($,?,u) = ~ o ( f O I x )  + ho(u)) + ?'(AX +- Bu.). 
The maximum  value of the Hamilt.onian over all values of u in the 
restraint  set fl is denoted by N ,  Le., 

: l f ($ , i )  = max H($,?,u). 
uc n 

All measurable controls u(t)  c 0 on finite intervals [O,T] that, 
steer t,he system from  an initial state x(0) = x. to  a final state 
z ( T )  = S T  are admksible. The following theorem  provides the 
required necessary condit.ions for  optimality. 

Theorem: If u*(t) is an admissible control with response s*(t) that 
minimizes C(u) ,  then  it is necessary that 

1) there exist a  nontrivial  augmented  adjoint response $ * ( t )  

2) H($*,?*,u*) = N(Q*,a*) almost  everywhere on [O,T], 
3)  M($* ,Q*)  = 0 everywhere on [O,T], and 
4)  t l a  < 0. 

such that 

N0t.e t.hat, if fo(z) is smooth, then a&) = af0/dx and  the above 
theorem is the usual  maximal principle. Proof of the  theorem in its 
present form follows easily wit.h nlinor modification of st.andard 
t,echniques (in particular, see Chapter 3 of Markus  and Lee [6] ). 

In  the  area control  problem, the following ident,ifications can be 
made: 

io(.) = 011 + {ZZ j  - L)2 + 014{Zhj(Zj)j (5 1 

P ( U )  = 013( Zrn.jUj~j} (6) 

H ( W , u )  = tlo(fO(z) + ha(u)} + ZtliUj. (7 1 
Also, the  ith component of u p  is given by 

(U,O)i = 2{22j - L )  - zui, i = I , .  . ' ,R 

where 

ar dhi 
2 dxi 

,yi = -- 

and where dhi/dz, is to  be int,erpreted to  assume any value between 
the left- and right-hand  derivatives  at.  a  point of discont,inuity. 
Consequently, the adjoint.  equations are 

7ji = -2&Zxj - L )  - 2qoai, i = 1,. . .,n. (8 ) 

The conditions of the maximal principle are st,ill satisfied if the 

If qi = 1, then 

i Ui v i  > pi 
ai* = o ltlil < pi 

- u i  Ti < -pi. (10) 

The special points qi = .tpi are of interest in t,he event. that  the 
adjoint response &) might. dwell a t  one of these  points for a finite- 
time  interval. If on  a finitetime  interval qi(t)  = +pi, then G; is 
maximized [with G;(u;) = 01 by  all ui in the range 0 5 ai 5 U ; .  
Similarly, if t l ; ( t )  E -pi, Gi is maximized by all ui in the range 
- 5 ui 5 0. These  points  are "singular points"; here, maximizing 
the  Hamiltonian does not uniquely define the  optimal control [TI ,  
[8]. Additional necessary conditions can be obt.ained from the  state 
and  adjoint equations. 

Suppose, for  the first. k of the n generat.ing stat.ions, t,he adjoint 
response is 7; = &pi on some finite interval (a$). Then, t.he opt.ima1 
control ai* is well defined for i = k + 1 , .  . .,n, but. is singular for 
i = 1,. . .,k. On (a$),  according to  t.he adjoint canonica1 equat,ions, 
for i = 1,-.  .,k, 

Thus, t.hese k stat.ions  all operate  with  the  same value of incremental 
heat  rate, which is  proportional to  t.he area megawat,t. deficiency. 
Also, on (o.,b), for i = 1,. . ,li, iji 3 0, which leads to 

Since a  staircase  function has been assumed for the increment,al heat 
rate characteristic, the second derivative vanishes (except at.  a valve 
point, where it i s  undefined). Hence, the   fo l low~g relat.ion holds: 

21%; = -Z&lw,j. (12) 

Thus,  the  summation of the singular controllers must  equal  the 
negat.ive summation of t.he nonsingular controllers. It may  happen 
that  the  boundednes of the cont,rollers prevents fulfillment, of this 
condition. This means t.hat. the first. j adjoint  equations cannot be 
satisfied on the  finitetime  interval (a$) by  the solutions v i  = * P i ,  

i = 1,. . . ,k, and hence such  a  singular condition cannot exist.. 
For the case k = 1, that is, when only one of the n adjoint vari- 

ables dwells on 7 = .to, on the  finitetime  interval (a$),  then  the 
optimal singular  control is uniquely specified on (a$) by (12). 

Adjoint Vector Boundary Conditions 

The condjtions of the maximal  principle can be applied t.o obtain 
necessary c6nditions on the  initial  and final  values of the  adjoint 
variables. Consider the condition H(rj,%,u) = 0, almost  everywhere 
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Fig. 2.  Definition of control  zones in adjoint  space. 

dong optimal traject,ories. In particular,  for t = O', and t = T - ,  the 
opt.ima1 state response z( t )  is equal to  zo and XT, respectively, and  the 
corresponding boundary values of the adjoint,  vector are denoted 
~0 and VT. These boundary values of the  state vector and  adjoint 
vector  are related by  the equat,ion 

Z [ ~ ~ Z C <  - j3il u;l "1 = a1 + ( Z s j  - L ]  = CYI( Z h j ( ~ j ) ) .  (13) 

For  the initial and terminal times, the right  side of (13) depends only 
on the known vectors ro and 17. The left side of (13) depends only on 
the optimal  values of and u i .  But in the previous sections, relations 
were derived that express the optimal controllers ui* in terms of the 
optimal adjoint  variables ~ i * .  Therefore, the left  side of (13) de- 
pends only on the optimal  adjoint.  vector v i * .  Solutions of (13) are 
hypersurfaces in the n-dimensional adjoint  spare representing the 
locus of allowable initial and  target vectors q o  and VT, respectively. 

For one special case of interest, when p = 1 ,  n = 2, the resulting 
hypersurface is the polygon shown  in  Fig. 2.  

Iv. SOLUTION FOR SPECIAL C.\SE 

The optimal feedback controller will be synthesized for the case in 
which the control area contains just two  generating stations (n = 3) ,  
and  the cost functional penalizes the control input to  the first power 
(q  = 1 ) .  For convenience, the  station with the larger maximum ron- 
trol bound is designated  Kumber 1 ( C y l  > C r 2 ) .  The Hamiltonian 
maximization conditions  provide the  rwults summarized in Fig. 2. 
Singular  solutions exist on Segments d and B. 

The feedback controller is synthesized by integrating  the  state  and 
adjoint  equations  backn-ard in time. By starting at t = T ,  with  the 
state  vector ( ~ 1 , a )  at  the  target point (.r1=,z2r) and with the adjoint 
vector  at some arbitrary point on the target octagon, an  optimal 

H 
Scation S o .  1 Clegavatt Generation, X1 

Fig. 3.  Overall state portrait-switching curves. 

Station Zc. 1 Hegawatt Generation, X1 
Fig. 4.  Orerall state portrait-aptimal trajectories. 

trajectory  may be traced out in the  state  and  adjoint spaces  for  all 
subintervals with t < T .  This process may be repeated for all points 
on the  target octagon, thereby  tracing out all possible optimal 
trajectoriw. 

In particular, the points at m-hich optimal  trajectories cross t.he 
controller switching lines ( T ~  = =I=& = &tat) ma>- be mapped into 
the  state  spare. When all  such switching lines have been mapped into 
the  atate space, the  state $pace will have been divided into regions of 
constant optimal  control  action (ul*,us*). This N-ill complete the 
synthesi; of the optimal feedback controller. 

The  svitching  linw obtained in this way are shon-n in Fig. 3. The 
control values: in each zone are  tabulated in Fig. 2. Optimal trajec- 
tories in the  state space are shown in Fig. 4. Iletails of the com- 
putation of the am-itching lines can be found in [lo].  
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V .  VALVE POINT SINGULARITIES 

An import.ant  characteristic of the optimal cont,roller is observed 
by examining the corre5ponding opt.ima1 adjoint, and  state trajec- 
tories illustrated in Figs. 5 and 6, respectively. 

It, is not.ed t.hat  Fig. 5 shows t.wo t,rajectories  terminat,ing  at. Tg, 
namely, ( O ~ , X , M , T ~ )  and (OS’,F‘,Jf,Ti). The corrcsponding state- 
spare trajectories are shown in Fig. 6. This  situation arises when a. 
brajectory ds-ells on a Number 2 valve  point  over  a finite-t,ime int.er- 
val, a illustrated  by  the  adjoiut  trajectolies  through point- X .  The 
question  arises: What is the correct  value of u2 while the  trajector 
passes through Zone 8? In order to  travel from X to  X ,  the  value 
u 2  = uzd must. be  wed.  In order to  travel  from P to  211, the  value 
uz = u?3 must. be used. But  for trajectories that ent,er Zone 8 a t  
points 3” between P and A’, the  optimal  value of u? is  not,  uniquely 
determined. -4s shown by Fig. 7, neit,her uz3 nor uz4 will lead from 
X ‘  t.0 M .  One  approach, illustrated in  Fig. 7, would be to set u z  = u?( 

on ( X ’ , P ’ )  and then to ?--itch to  uz = u% on (P’ ,X) .  This  approach 
would lead to an  optimal trajectory to  the  target 7’s. But, an equally 
effective approach would be to set, 6 2  = 6% at. point AT‘, and  then to  
switch  back t o  ut4 when the  traject,ory  intersects  the curve A 7 X .  Or, 
intermediate values of uz, between u s  and u?*, could be chosen such 
that  the  tmjectory arrives  at, the +& swit,ching line at  t.ime t = M .  
I n  all these  approaches, the state-space trajectories  are identical; 
they  travel along t.he valve  point, from A’’ t.o point. 111, regardles 
of the  approach chosen for select.ing the  value for uz. 

It. is significant, that.  the choice of u2 does not affect the  value of the 
cost. functional. The overall t.ime interval T,  the first. term of the  cost 
functional, is determined only by U 1  in this case, and is  unaffected 
by u?. The second and  third t.erms of the cost funct,ional  contain the 
time functions zl, xf, ul, and u z ,  ahich  are unaffected by 62.  And the 
final cost term depends on the total fuel cost, curve, not. the incre- 
mental cost curve. For values of uz bet.\ueen m 3  and ut(, this  term of the 
cost f~~nctional is unaffected. 

Hence, any value (or sequence of valuas)  for u2 that. leads the 
trajectory from X’ to 3f will be acceptable,  since  neither the  state- 
space trajecl.ories, nor the switching loci, nor the value of the cost 
funct.iona1 will be affected by  the choice. It. is int.eresting to  note  that, 
the  approach  taken  by Luenberger [2] specifies u?(t)  t.hrough an 
associated optimal control problem. The state-space  switching 
hyperbolas are therefore joined toget.her by line  segments  along t.he 
valve points, such as the segment ?@. 
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VI. COXCLUSIOXS 

This  paper has  reported a new formulation of the  area control 
problem. In  essence, the proposed controller combines the funct,ions 
of “economic dispatch” a.nd ”regulation”  in a meaningful way. 
The control  problem is formulated for the cont.ro1 area,  placing  an 
upper bound on the allowable rate of change of power out.put  for 
each generator  and incorporating  a  performance  measure  t.hat in- 
cludes considerat.ion of: time  to  target;  area fuel costs; area  megawatt 
error;  and  rate of change of generat,ion. This  dynamic opt.ima1 control 
problem is solved to find the  optimal  rate at which each  generator 
should be driven toward  its  megaaatt t,arget., such that t.he cost 
functional is minimized. 

Throttling losses, present  in each valve region of multiple valve 
turbines, are considered throughout. this research. A staircase func- 
tion is wed  to represent the incremental cost curve, reflecting this 
characterist,ic. I t  should be noted that t,he result,ing t.arget. state  has 
the  property t.hat. all generating st.ations operate at.  a  valve  point 
except, one, whose olltput  trims  the  total generation to  match de- 
mand.  In  the  dynamic  situation small changes in demand affect only 
this  generator;  the others remain at  constant output. It. is interesting 
to  note bhat it is primarily the inclusion of fuel costs that holds the 
remaining  generators at constant  ont,put, although  the rate of 
change of generation pena1t.y produces a similar, but lesser, effect. 
Larger deviat,ions, of course, bring in the second generator to assist 
in  reducing the n1egaP;at.t error. 

The artificial  distinction bet,ween regulating and economic generat- 

Fig. 5.  Optimal  adjoint  trajectory  rargers in Zones 7.  8. 1. and 2. 

_ - _ _ _ - - _ - -  - - - - _ _ - _ _ _ - _ _ _ _ _ -  

r 2  I 

Fig. 6. Optimal  state  trajectory  targets  in  Zones 7,  8, 1, and  2. 

M /  

Fig. 7. Valve point. singularity,  t.argets  in  Zone 7. 
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ing  units is  eliminated as all generat.ors on automatic control are 
available for load tracking whenever it is necessary to use them. 
On the  other  hand, only the most advantageous  generators are 
maneuvered,  depending  upon the  system  state  and load  demand,  as 
well as the individual  generator dynamic  and economic character- 
isticz. A related affect, due  to  the incremental  heat rate discontinuities 
(cost functional kinks), is that certain  trajectories  tend to dwell at 
various  valve  points  encountered en route  to  the  target. 

Kecessary conditions for the optimal  controller were derived for an 
arbitrary number of participating generators. A feedback controller 
was synthesized for the special case of two-generator load sharing and 
was characterized by specification of the switching lines in the  state 
space. This procedure n o d d  not be suitable for systems involving a 
greater number of generating stations because of the difficulty in 
storing  the complex switching surfaces, even if they could be ob- 
tained. A numerical procedure for computer  solution of the  state  and 
adjoint differential equations is a reasonable alternative.  Standard 
procedures do not apply, however, because of the singular nature of 
the solutions.  .Ilthough the controller  singularities are easily reme- 
died, the valve  point  singularities are  not. 
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A Maximal-Order Theorem for Optimal Rational Models 

MARVIS I. FREEDkL-IS 

Abst~act-The problem of finding an optimal approximating 
model (in &sense) to a fixed a t e r  out of the  class of rational 
filters of “order” 5 k is  considered. After the existence  question is 
settled,  it  is shown that  such  an optimal  model must in  a  certain 
sense be of maximal-order k.  

I. IKTRODUCTIOS 
In  the numerical-analysis approximation  theory literature,  the 

past decade has seen a good deal of interest.  devoted to  the  rational 
approximation problem-more eqdicitly,  to  the problem of opti- 
mall; approximating  a fixed (most often continuous)  function on a 
finite-interval or finitemeasure space by a  function selected from 
some subclass of the  rational functions (or =-hat  have been called 
“generalized rational” functions). The names wsociated with  this 
work are Cheney, Loeb, Goldstein, and  Wahh, among others (see 

It is clear to  the reader  oriented more toward  system  theory that 
an analog to  the  rational approsirnation problem exists in linear 
system  theory.  Samely, given a causal1 convolution filter G (not 

[1l-[il). 
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1 For  definition  and  properties of causality.  see  [6]-[S]. 

necessarily with rational  transfer  function), one can consider the 
problem of ”optimally modeling” G by a causal’ filter r with  rational 
transfer  function of “order” 5 k ,  i.e., by a finite-order system of 
order 5 k .  This is the problem on which we shall focus. 

Following Cheney and Goldstein [l], we make use of the LI-norm 
(rather  than  the Chebyshev  norm as in [3] and [3] ). However, the 
nature of our problem forces us to consider integrals over the non- 
compact domain (- m, m ). Also, the functions involved in our 
study  are more stringently restricted than in [ 11 since they represent 
causal’ filters. As such, they have  Laplace  transforms analytic in 
the right-half plane. 

Having said the above, we  now add that analogs of some of the 
results of [1] do, in fact,  carrv over to  our context. The methods of 
[ l ]  do not  carry  over due  to  the  noncompactnes of our domain. 
However, we do  have additional ana1yticit.y properties a t  our dis- 
posal, and t h e e  are brought. into play to yield our  results. 

In Section I11 an affirmative ansB-er is given to  the existence 
question for optimal rational models of restricted  order. The diffi- 
culty is that  the  rational functions do not form a  linear  space, so the 
“usual” techniques do not work. Our method consists of transforming 
the problem into an  equivalent. one on the  unit  disk. Section I1 deals 
with  the preliminaries required to effect this transformation. 

In Section IV, Theorem 2, we prove the main result of this  paper: 
If G does not. have  a rational transfer  function,  then  an  optimal 
rational model for G selected from the class of rationals of order 5 k 
must actually have full-order k. (Take order to mean order of de- 
nominator when in lowest terms) 

11. WITHEMITICAL PRELIYIKARIES 
Debfinition 1: Let L?+ denote the Hilbert  space of real-valued 

measurable  functions on (- a, ) which are  square integrable with 
respect to Lebesgue measure, and which have support in [0, a ). 
We shall informally refer to elements of Lr- a3 causal L&lters. 

Dejnition ‘I: For g(.)  a causal LTfilter (g(.)EL?+) we define the 
Fourier-Laplace  transform G(s) of g(. ) by 

G(s )  = exp ( - s t )  g( t )  dt, for s with Re (8 )  2 0; 1- 
G ( b )  is thus  the  LrFourier  transform of g(- ). 

Definition 3: For each  integer k > 0 let Eli denote  the set. of rational 
functions of the complex variable s writable in lowest terms  as 
p(s)lp(s) where 

o ( p ( s ) )  = degree of the polynomial p ( s ) ,  etc.; 

b) p ( s )  has no zeros in Re ( s j  2 0. 

Remark 1: Each element r ( s )  of R k  is the Fourier-Laplace trans- 
form of some causal LFiilter h(t). 

The  next section will treat,  the existence question for  our approxi- 
mation problem by transforming it. into  an equivalent problem de- 
fined on the  unit circle. In the remainder of this preliminary sect.ion 
we study  the transformation required. 

In this  direction, we now consider the linear fractional trans- 
formation z = ~ ( s )  = (1 - s):l + s, which maps the right-half plane 
Re (s)  > 0 holomorphically 1 - 1 onto  the unit disk I zI < 1 while 
also taking  the  imqinary axis to I 21  = 1, i.e., 

and -T < 8 < R (whilew = f m corresponds to e = * R ) .  

Dejnition 4: For each  integer k > 0 we shall denote  by RIk the 
set of rational  functions of the complex variable z defined on ! zI 5 1, 
which can be writ.ten in lowest terms as q ( z ) j p ( ~ )  where 

stat.e 


