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Four-level estimation technique.

#s = ¢ + (C1C2 + TPy)ps + (C1CC5 + C.TP;

+ C5* + TP\Py)gs (36)
és = ¢5 + (C1Cy 4+ TPo)gs + (C10:Cs + C:TP;

+ TPPo)ps + (C1C:Cs2 4 TP*Py + TC.P\Ps

+ TCC3P; 4+ Ci)ga. 37)

Rather than give all of the details for ¢4, ¢;, and ¢s, we shall first
give the details for ¢: and then indicate very briefly how ¢; and ¢
are obtained.

¢+ 13 obtained by substituting (15), (14), and (5) into the expression

(38)

However, @2 is already available from the computation of ¢3; it
(although we have not derived it here) is

¢ = h_e"@'"’ik.

T
) = b3 (39)
Cigz + C32Cs
Thus ¢4 1s more easily computed as follows:
PR T 0 T
¢ = hi'd(@M) =0 1 O\ P 1 C o3
P3 1 Ca AC;¢2 + 03204
PyT¢s + Tos
= (0 1 O} PuT¢: + ¢3 + CiCasbe + Ca32C,
PT¢: + Cigs + CiCag2 + C53C;
= PyT¢r 4+ ¢3 + CiCopr + C2032C
= PyT'¢s + ¢35 + CiCad2 + Cisl¢n (40)
where we have used the fact that Co(Cs = ¢
¢; is computed from the expression
¢s = hi'B(D™)) (41)

where @3 is given by the second matrix in the second line on the
right-hand side of (40). Observing that the second raw of &3 is
¢4, we begin the computation of ¢; by expressing ®3 as

PiTer + T
o) = ¢ (42)
PiT¢y + Cids + CiCsge + C5°C,
The computation of s is completed by carrying through the opera-
tions indicated in (41). ¢¢ is derived in a similar manner.
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On the Structure of Optimal Area Controls in
Electric Power Networks

HARRY G. KWATNY ano THOMAS E. BECHERT

Abstract—Static optimization techniques have been used by the
electric power industry for several years to solve the problem of
economic load allocation. Experience has shown that difficulties
frequently arise when these solutions are incorporated in the feed-
back control of dynamic electric power networks. In a recent paper,
economic load allocation was formulated as a dynamic optimal
control problem in an effort to overcome the disadvantages of con-
trollers currently used. At the heart of that problem is the area con-
trol problem that is treated in detail in this paper. An unusual fea-
ture of the area control problem is that it contains kinks. The maxi~-
mal principle is modified for this situation. Necessary conditions for
an optimal controlier are obtained for the general case of n gener-
ators. The optimal feedback controller is synthesized for the case
of two-generator load sharing.

1. INTRODUCTION

A primary objective in the control of electric power networks is to
match generation to load and to distribute the required generation
among the available generators in the most economical manner. To
accomplish this objective, most modern dispatch controllers deter-
mine the steady-state minimum operating cost distribution of load
and incorporate the solution to this problem as a trim on the load-
frequency controller. Such a procedure often results in unsatisfactory
performance, as might be anticipated when the solution to a static
problem is imbedded in the feedback eontrol of a dynamic system.
Two current trends tend to increase the likelihood of such an occur-
rence. One is the decrease in system response rate capabilities as a
percentage of system capacity. The second is the tendency to include
in the dispatch controllers more accurate representation of thermal
plant economic charaecteristics, in particular, recognition of the dis-
continuous incremental heat rate characteristics of modern multiple
valve turbines.

In [1], optimal load allocation is formulated as a dynamie control
problem, which takes into account not only the steady-state cost
characteristics, but also the dynamic costs involved in changing the
level of megawatt generation. The procedure used to design the
controller is to partition the overall problem into a single “network
control problem” and several identical ‘‘area control problems.”
The feedback controller has been synthesized for the special case of
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two-generator load sharing in one area of a two-area interconnection.
In digital simulations, reported in [1], the proposed controller
proved far superior to conventional controllers in steering the system
rapidly to the new economic operating point following a load change.

In this paper the construction of the optimal area controller is
described in detail. Necessary conditions are obtained for the general
case in which the area is composed of an arbitrary number of thermal
generating stations. These conditions are used to obtain a feedback
synthesis of the optimal controller for a two-generator control area.
The area control problem has a number of interesting character-
istics, and solution of the two-generator problem provides valuable
insights into the structure of the general solution.

II. Tur Area ConTROL PrROBLEM
System Model

A control area may be considered to consist of a number of generat-
ing stations, each of which is limited to a maximum allowable rate
of change of power output [1]. Let

z: Power delivered by the ith generating station.

u; Rate of change of power output of ¢th generating station.

U: Maximum allowable rate of change of power output of ith
generating station.

n  Number of generating stations in the control area.

The dynamic system may be represented by the following set of first-
order linear differential equations:

do:

o= ue i= L% (1)

The control vector u(f) lies in the restraint set @ defined by the
following:

Q= {u: |u;| < U, i = 1,2,---,n}. (2)

Performance Evaluation

The function of the area control system is to steer the area gener-
ator outputs from an arbitrary initial state to a desired target state
which will be specified below. Under normal conditions this can
always be accomplished in a finite-time interval which will be desig-
nated [0,7]. Performance evaluation of candidate controllers will
be based on costs incurred within the control area during the transi-
tion. These costs include: 1) the duration of the control interval
[0,T]; 2) the area megawatt error; 3) costs based on the rate of
change of power output; and 4) fuel costs. Costs associated with 3)
reflect, among other things, reduction of machinery life due to in-
creased mechanical and thermal stresses. The cost functional used in
this study Is

T
Clu) = f {on 4+ (Zx; — L)? 4 as(Zm;|u;] %) + a(Zh; (@)} dt (3)
0

where L is the total area power demand, h;(z;) is the steady-state
heat rate characteristic of the jth generating station, and m; and ¢;
are constants associated with the jth generating station.

Heat Rate Characteristics

The steady-state fuel consumed per unit time, or heat rate (&),
increases with output power generation (z). In most applications,
the heat rate characteristics are approximated by smooth convex
functions [3], although some applications have explicitly recognized
the incremental heat rate discontinuities due to valve points [4],{5].
These discontinuities are considered to be of central importance in
the operation of electric power systems and will be included in the
present analysis. In this study, the heat rate characteristics will be
approximated by piecewise linear curves as shown in Fig. 1.

Target State

Let H denote the overall area heat rate, equal to the sum of the
individual station heat rates. Let g denote the area power generation
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muliiple valve turbine.

deficiency. The target state is defined as the values of x1,3s,- - -,25
that minimize H, subject to the constraintz, + 2 + --- + 2, = L.

Statement of the Area Conirol Problem

The set of admissible controls is the set of measurable control
vectors u(t) in © that steer the system state (1) from some arbitrary
initial state x(0) = z, to the fixed target state x(7) = X1 correspond-

ing to a fixed load L. The control problem is to find the optimal

control u*(t), i.e., the vector u(f) that steers the system from z; to
X 7 while minimizing the cost functional C(u).

1II. OpmiMAL CONTROLLER NECEsSsARY CONDITIONS
The Maximal Principle

The problem at hand differs from the usual optimal control prob-
lem in that the integrand of C(u) contains functions of the state
variables, specifically, the unit heat rates hi(z:), which have dis-
continuous first derivatives. It is illuminating to examine the situ-
ation in a slightly more general context. Let f(z) be a convex function
defined on some open interval D. Then f(z) is supported from below
at each point p € D by a linear support hyperplane

S(z,p) = f(®) + os(p)x — p). )

fis said to be rough at p if it has more than one support hyperplane at
p; otherwise, f is said to be smooth at p.

The essential characteristic of the area control problem is that the
integrand of C(u) is rough. Luenberger [2] has applied the term
“kinks” to describe such a situation. 1n the presence of kinks the
usual theorems that provide necessary conditions for optimal control
fail to apply. The approach taken here will be to appropriately
modify the maximal principle in order to obtain a suitable set of
necessary conditions. As will be seen, the required modifications are
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straightforward. Nevertheless, they have distinctive consequences
on the final solution.
Consider the linear time-invariant control process in R»

z = Azr 4+ Bu(t)

with cost functional

T
Cu) = f {fo@z) + ro(u)} de
0

where f°(z) and A%(u) are positive convex functions, and with com-
pact, convex control restraint u(f) C @ € R™. The state vector z(f)
is extended to an (n + 1)-vector

£(t) = (%(w:xv(t)) cTa(E))’
by defining an additional state variable
gy = foz) + h'(u),

An (n + 1)-dimensional augmented adjoint vector 4(¢) is defined as a
continuous solution of the system of equations

70(t)
7= —nd — mosn(z),

The Hamiltonian function is defined as
H(#,8u) = no(fox) + h%u)) + o'(Az + Bu).

The maximum value of the Hamiltonian over all values of « in the
restraint set Q is denoted by M, i.e.,

constant

7 [ Rr*,

M(#,£) = max H(#,2,u).
w2

All measurable controls u(¢) < © on finite intervals [0,7'] that
steer the system from an initial state z(0) = z to a final state
z(T) = Xz are admissible. The following theorem provides the
required necessary conditions for optimality.

Theorem: If w*(t) is an admissible control with response z*(¢) that
minimizes C(u), then it is necessary that

1) there exist a nontrivial augmented adjoint response #*(¢)
such that

2) H(@#*&*u*) = M(#%4£*) almost everywhere on [0,77],

3) M(%*4*) = 0 everywhere on [0,7], and

4:) 0 < O.

Note that, if fo(x) is smooth, then opn(x) = 4f%/8z and the above
theorem is the usual maximal principle. Proof of the theorem in its
present form follows easily with minor modification of standard
techniques (in particular, see Chapter 3 of Markus and Lee [6]).

In the area control problem, the following identifications can be
made:

@) = e + {22 — L} + au{Zhi(z;)} (5)
RO(u) = oaf Zmju0i} (6)
H{#gu) = nffo(x) + BO@)} + Znyu;. (7)

Also, the #th component of ¢y is given by
(ep0)i = 2{Zz; — L} — 20;, =1, +ym
where

o4 dh;

o; = —— —

2 dx;

and where dh;/dz; is to be interpreted to assume any value between
the left- and right-hand derivatives at a point of discontinuity.
Consequently, the adjoint equations are

No= —2770{ Zx; — L} — 2004, 7 =1,---,m. 8)

The conditions of the maximal principle are still satisfied if the
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adjoint vector #* is replaced by #*/7,. Without loss of generality, it
is henceforth assumed that no = —1.
M azimization of the Hamiltonian

Denoting B: = ogm:, maximizing the Hamiltonian as given by
(5)-(7) with respect to u is equivalent to maximizing each of the
functions

Gilws) = maws — B wal i=1,--n

with respect to us. If ¢: > 1, then it is not difficult to show that

Us A>U;
u* = A |Al < U:
—-U; A< =U; 9)
where
_t
|’71'| gi—1
A=|— sgn 7.
l:ﬁﬂi] g
If ¢; = 1, then
U; ni > B
u* = 0 | < 8:
-U; 7 < —Bi. (10)

The special points »; = ==8; are of interest in the event that the
adjoint response 5:(t) might dwell at one of these points for a finite~
time interval. If on a finite-time interval 5:({) = -8, then &; is
maximized [with G:(u:;) = 0] by all u; in the range 0 < u; < U
Similarly, if #:() = —gi, G: is maximized by all u; in the range
~U; < u; < 0. These points are ‘‘singular points’’; here, maximizing
the Hamiltonian does not uniquely define the optimal control [7],
[8]. Additional necessary conditions can be obtained from the state
and adjoint equations.

Suppose, for the first k of the n generating stations, the adjoint
response is y: = =8; on some finite interval (a,b). Then, the optimal
control «;* is well defined for ¢ = k¥ 4+ 1,---,n, but is singular for
i = 1,-. k. On (a,b), according to the adjoint canonieal equations,
fori = 1,--,k,

dhi(x;)

0=2[E.’l7j—L]+a4 )
dzs

I

LE E<n.

Thus, these k stations all operate with the same value of incremental
heat rate, which is proportional to the area megawatt deficiency.
Also, on (a,b), for ¢ = 1,- -k, #: = 0, which leads to

as d%hi(z:)
— U =
2 d.'l:i2

Zu; -+ (11)
Since a staircase function has been assumed for the incremental heat
rate characteristic, the second derivative vanishes (except at a valve
point, where it is undefined). Hence, the following relation holds:

Sku; = — D™y (12)

Thus, the summation of the singular controllers must equal the
negative summation of the nonsingular controllers. It may happen
that the boundedness of the controllers prevents fulfillment of this
condition. This means that the first j adjoint equations cannet be
satisfied on the finite-time interval (a,b) by the solutions ; = =8,
i = 1, -+,k, and hence such a singular condition cannot exist.

For the case k = 1, that is, when only one of the n adjoint vari-
ables dwells on 4 = =8, on the finite-time interval (a,b), then the
optimal singular control is uniquely specified on (a,b) by (12).

Adjoint Vector Boundary Condilions

The conditions of the maximal prineiple can be applied to obtain
necessary conditions on the initial and final values of the adjoint
variables. Consider the eondition H(#,%u) = 0, almost everywhere
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along optimal trajectories. In particular, for{ = 0+, and ¢ = T, the
optimal state response x(t) is equal to z, and =, respectively, and the
corresponding boundary values of the adjoint vector are denoted
70 and nr. These boundary values of the state vector and adjoint
vector are related by the equation
Sl — B:|wi| ¥ = o + {2z, — L}® = asfZh(z)}. (13)

For the initial and terminal times, the right side of (13) depends only
on the known vectors z, and z7. The left side of (13) depends only on
the optimal values of : and u:. But in the previous sections, relations
were derived that express the optimal controllers u;* in terms of the
optimal adjoint variables »:;*. Therefore, the left side of (13) de-
pends only on the optimal adjoint vector 5;* Solutions of (13) are
hypersurfaces in the n-dimensional adjoint space representing the
locus of allowable initial and target vectors 7, and 57, respectively.

For one special case of interest, when ¢ = 1, n = 2, the resulting
hypersurface is the polygon shown in Fig. 2.

IV. SoLuTioN For SeeciaL Cask

The optimal feedback controller will be synthesized for the case in
which the control area contains just two generating stations (n = 2),
and the cost funectional penalizes the control input to the first power
(g = 1). For convenience, the station with the larger maximum con-
trol bound is designated Number 1 (I’y > [:). The Hamiltonian
maximization conditions provide the results summarized in Fig. 2.
Singular solutions exist on Segments 4 and B.

The feedback controller is synthesized by integrating the state and
adjoint equations backward in time. By starting at ¢ = T, with the
state vector (z,,z2) at the target point (x17,z27) and with the adjoint
vector at some arbitrary point on the target octagon, an optimal
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trajectory may be traced out in the state and adjoint spaces for all
subintervals with ¢ < T. This process may be repeated for all points
on the target octagon, thereby tracing out all possible optimal
trajectories.

In particular, the points at which optimal trajectories cross the
controller switching lines (3, = =8, n2 = ==3:) may be mapped into
the state space. When all such switching lines have been mapped into
the state space, the state space will have been divided into regions of
constant optimal control action (u,*,u2*). This will complete the
synthesis of the optimal feedback controller.

The switching lines obtained in this way are shown in Fig. 3. The
control values in each zone are tabulated in Fig. 2. Optimal trajec-
tories in the state space are shown in Fig. 4. Details of the com-
putation of the switching lines can be found in [10].



SHORT PAPERS

V. VALVE POINT SINGULARITIES

An important characteristic of the optimal controller is observed
by examining the eorresponding optimal adjoint and state trajec-
tories illustrated in Figs. 5 and 6, respectively.

It is noted that Fig. 5 shows two trajectories terminating at T,
namely, (0sN,3,7Ts) and (0s',P,37,7;). The corresponding state-
space trajectories are shown in Fig. 6, This situation arises when a
trajectory dwells on a Number 2 valve point over a finite-time inter-
val, as illustrated by the adjoint trajectories through point M. The
question arises: What is the correct value of o2 while the trajector
passes through Zone 8? In order to travel from N to A, the value
o2 o2 must be used. In order to travel from P to 3, the value
o2 = g9 must be used. But for trajectories that enter Zone 8 at
points N/ between I” and N, the optimal value of o2 is not uniquely
determined. As shown by Fig. 7, neither o9; nor o will lead from
N’ to M. One approach, itlustrated in Fig. 7, would be to set o2 = a2
on (¥/,P’) and then to switch to o2 = o9 on (P’,Af). This approach
would lead to an optimal trajectory to the target 7's. But an equally
effective approach would be to set ¢2 = o3 at point N’, and then to
switch back to oo when the trajectory intersects the curve N1{. Or,
intermediate values of o3, between oz and ow, could be chosen such
that the trajectory arrives at the +g, switehing line at time ¢t = 1.
In all these approaches, the state-space trajectories are identical;
they travel along the valve point from N’ to point 3/, regardless
of the approach chosen for selecting the value for o2,

It is significant that the choice of o2 does not affect the value of the
cost funetional. The overall time interval 7', the first term of the cost
functional, is determined only by U/; in this case, and is unaffected
by o2 The second and third terms of the cost functional contain the
time functions a1, x2, w1, and us, which are unaffected by 2. And the
final cost term depends on the total fuel cost curve, not the incre-
mental cost curve. For values of 62 between o9 and o3, this term of the
cost functional is unaffected.

Hence, any value (or sequence of values) for ¢. that leads the
trajectory from N’ to M will be acceptable, since neither the state-
space trajectories, nor the switching loci, nor the value of the cost
functional will be affected by the choice. It is interesting to note that
the approach taken by Luenberger [2] specifies o(¢) through an
associated optimal control problem. The state-space switching
hyperbolas are therefore joined together by line segments along the

valve points, such as the segment N P.

VI. CoNcLUSIONS

This paper has reported a new formulation of the area control
problem. In essence, the proposed controller combines the functions
of “economie dispateh” and ‘‘regulation” in a meaningful way.
The control problem is formulated for the control area, placing an
upper bound on the allowable rate of change of power output for
each generator and incorporating a performance measure that in-
cludes consideration of : time to target; area fuel costs; area megawatt
error; and rate of change of generation. This dynamic optimal control
problem is solved to find the optimal rate at which each generator
should be driven toward its megawatt target, such that the cost
functional is minimized.

Throttling losses, present in each valve region of multiple valve
turbines, are considered throughout this research. A staircase fune-
tion is used to represent the incremental cost curve, reflecting this
characteristie. It should be noted that the resulting target state has
the property that all generating stations operate at a valve point
except one, whose output trims the total generation to match de-
mand. In the dynamie situation small changes in demand affect only
this generator; the others remain at constant output. It is interesting
to note that it is primarily the inclusion of fuel costs that holds the
remaining generalors at constant output, although the rate of
change of generation penalty produces a similar, but lesser, effect.
Larger deviations, of course, bring in the second generator to assist
in reducing the megawatt error.

The artificial distinction between regulating and economic generat-

171
4 /0
#¥2 VALVE POINTS ——<= 4 PRSI TN {\
Ty T, -
/023 7 e %
, /v/ - To ~ \
Tzp T e &
g - \
X - $Tg
— BT ns
TR . i e G 1 ®
8 L0 M E \I
T P2 P ~ 7 T2
= T p e '
. . . . | @
. . . PLIE S Tt =, (4,

- . B e
-7 e / a I
. .
P / ; ! k4 LY
4 / : .
e ! !
; i . / ! I / | Ia . T;
-7 , J AR S A A P
O Oy % 95" Os 0 03 Oz O c L7
p
04 ,;

Fig. 5. Optimal adjoint trajectory targets in Zones 7, 8, 1, and 2.

Fig. 6. Optimal state trajectory targets in Zones 7, 8, 1, and 2.

UF]
a2ty
Gz = Gza —_ |
|

U23

@

TFig. 7. Valve point singularity, targets in Zone 7.



172

ing units is eliminated as all generators on automatic control are
available for load tracking whenever it is necessary to use them.
On the other hand, only the most advantageous generators are
maneuvered, depending upon the system state and load demand, as
well as the individual generator dynamic and economic character-
istics. A related affeet, due to the incremental heat rate discontinuities
(cost funectional kinks), is that certain trajectories tend to dwell at
various valve points encountered en route to the target.

Necessary conditions for the optimal controller were derived for an
arbitrary number of participating generators. A feedback controller
was synthesized for the special case of two-generator load sharing and
was characterized by specification of the switching lines in the state
space. This procedure would not be suitable for systems involving a
greater number of generating stations because of the difficulty in
storing the complex switching swifaces, even if they could be ob-
tained. A numerical procedure for computer solution of the state and
adjoint differential equations is a reasonable alternative. Standard
procedures do not apply, however, because of the singular nature of
the solutions. Although the controller singularities are easily reme-
died, the valve point singularities are not.
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A Maximal-Order Theorem for Optimal Rational Models
MARVIN I. FREEDMAN

Abstract—The problem of finding an optimal approximating
model (in L.-sense) to a fizxed filter out of the class of ratiomal
filters of “‘order” < kis considered. After the existence question is
settled, it is shown that such an optimal model must in a certain
sense be of maximal-order .

I. INTRODUCTION

In the numerical-analysis approximation theory literature, the
past decade has seen a good deal of interest devoted to the rational
approximation problem—more explicitly, to the problem of opti-
mally approximating a fixed (most often continuous) function on a
finite-interval or finite-measure space by a function selected from
some subelass of the rational functions (or what have been called
“generalized rational” functions). The names associated with this
work are Cheney, Loeb, Goldstein, and Walsh, among others (see

[11-[41).

It is clear to the reader oriented more toward system theory that
an analog to the rational approximation problem exists in linear
system theory. Namely, given a causal! convolution filter G (not
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necessarily with rational transfer function), one can consider the
problem of “‘optimally modeling” G by a causal® filter r with rational
transfer function of “order” < £, i.e., by a finite-order system of
order < k. This is the problem on which we shall focus.

Following Cheney and Goldstein [1], we make use of the Ly-norm
(rather than the Chebyshev norm as in [2] and [3]). However, the
nature of our problem forces us to consider integrals over the non-
compact domain (— «, «). Also, the functions involved in our
study are more stringently restricted than in [1] since they represent
causal!l filters. As such, they have Laplace transforms analytie in
the right-half plane.

Having said the above, we now add that analogs of some of the
results of (1] do, in fact, carry over to our context. The methods of
[1] do not carry over due to the noncompactness of our domain.
However, we do have additional analyticity properties at our dis-
posal, and these are brought into play to vield our results.

In Section III an affirmative answer is given to the existence
question for optimal rational models of restricted order. The diffi-
culty is that the rational functions do not form a linear space, so the
“usual” techniques do not work. Our method consists of transforming
the problem into an equivalent one on the unit disk. Section IT deals
with the preliminaries required to effect this transformation.

In Section IV, Theorem 2, we prove the main result of this paper:
If ¢ does not have a rational transfer function, then an optimal
rational model for G selected from the class of rationals of order < k
must actually have full-order k. (Take order to mean order of de-
nominator when in lowest terms.)

II. MATHEMATICAL PRELIMINARIES

Definition 1: Let L.* denote the Hilbert space of real-valued
measurable functions on (— =, «) which are square integrable with
respect to Lebesgue measure, and which have support in [0, ).
We shall informally refer to elements of Ly ™ as causal La-filters.

Definition 2: For g(-) a causal Lo-filter (g{- YEL.*) we define the
Fourier —Laplace transform G(s) of ¢(-) by

G(s) = f exp (—st) g(¢) di, for s with Re {s} > 0;
0

((iw) is thus the L.-Fourier transform of g(- ).

Definition 3: For each integer & > Olet E; denote the set of rational
functions of the complex variable s writable in lowest terms as
q(s)/p(s) where

a) o(g(s)) <olps)) <k

o(p(s)) =

b) p(s) has no zeros in Re {s} > 0.

degree of the polynomial p(s), ete.;

Remark 1: Each element r(s) of Ry is the Fourier-Laplace trans-
form of some causal L.-filter h(¢).

The next section will treat the existence question for our approxi-
mation problem by transforming it into an equivalent problem de-
fined on the unit circle. In the remainder of this preliminary section
we study the transformation required.

In this direction, we now consider the linear fractional trans-
formation z = »(s) = (1 — s)/1 + s, which maps the right-half plane
Re {s} > 0 holomorphically 1 — 1 onto the unit disk !z| < 1 while -
also taking the imaginary axis to |2, =1, 1i.e,

(.)—
ex W) = —
p 1 .2

for —o <w<

and —7 < 6 < 7 (whilew = £ o corresponds to § = ==7).

Definition 4: For each integer k£ > 0 we shall denote by Ri* the
set of rational functions of the complex variable z defined on '2| < 1,
which can be written in lowest terms as ¢{z)/p(z) where

a) o(p(2)) <k and o(q(z)) < k;
b) p(z) has no zerosin |2] < 1;
¢) ¢(—-1) =

The relationship between Rj and R/* is easily stated. We state



